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1 Introduction

This overview is organized withir a historical framework, although time limitations have
forced me to invent a version of history that is necessarily incomplete. The title of the talk
was given to me by the AAAI Program Committee, who wisely restricted the scope of my task
by including the descriptor “knowledge-based.” This mercifully allowed me tc; ignore a large
body of work that focuses exclusively on the syntactic structures of natural language. Even
so, the body of work that can accurately be described as “knowledge-based natural language
understanding” is large, and difficult to cover in the space of one hour. To maintain continuity,
I utilized the recurring theme of weak methods vs. strong methods. This foundational theme
helped me pare down my view of history and serves as my only defense against otherwise
unforgivable omissions in the overview. Even so, it was difficult to pick and choose from the
corpus of potentially relevant research, and the usual disclaimers about intelligible brevity at
the cost of comprehensive coverage must be piously invoked to ward off inevitable accusations

of ignorance, prejudice, and other sins associated with warped thinking.

P’m going to use a lot of examples to illustrate key concepts, interleaving the examples with
a chronological survey of the literature. We’ll periodically try to rise above the trees to see the
forest, and search for threads of strong methods and weak methods throughout. We’ll see how
strong methods came to dominate the field for a period of time, only to be followed by the

pendulum’s swing toward weak methods, where we seem to be today.

If we go back to the beginning of time, we go back about 15 years. I would date 1972 as
a convenient starting point for knowledge-based natural language processing. There were two
very important pieces of work that surfaced around 1972. First, Terry Winograd published his

Ph.D. dissertation under the title U/nderstanding Natural Language. |Winograd 1972]. At the




same time, Eugene Charniak completed his Ph.D. dissertation on a model of children’s story
comprehension. [Charniak 1972] Both of these theses came out of MIT - in fact, Charniak and

Winograd were office-mates at MIT.

Despite the physical proximity of the authors at the time, these two views of natural language
processing couldn’t be more different. Let me read you an excerpt from a recently published

retrospective by Terry Winograd. In his own words, he sums it up as follows:

“Fifteen years ago, a program named SHRDLU demonstrated that a computer
could carry on a simple conversation about a blocks world in written English. Its
success led to claims that the natural language problem had been solved and pre-
dictions that within a short time conversations with computers would be just like
those with people.

... With years of hindsight and experience, we now understand better why the
early optimism was unrealistic. Language, like many human capabilities, is far more

intricate and subtle than it appears on first inspection.” [Winograd 1987]

That’s Terry Winograd speaking in 1987. To understand the significance of his cautionary
hindsight, we must first understand that there was tremendous excitement over SHRDLU when
it was initially publicized in the early 70s. There was much less excitement over Charniak’s
relatively unknown thesis, although we do find people referencing it even now. Hubert Dreyfus,

a well-known professional critic of Al, says the following about Charniak:

“... by 1970, AI had turned into a flourishing research program, thanks to
a series of microworld successes, such as Winograd’s SHRDLU, Evan’s Analogy

Problem Program and Winston’s program which learned concepts from examples.




... Then rather suddenly, the field ran into unexpected trouble. It started, as
far as I can tell, with the failure of Charniak’s attempts to program children’s story
understanding. It turned out to be a much harder problem than one expected to
formulate a theory of common sense. It was not, as Minksy had hoped, just a

question of cataloging a few hundred thousand facts.” [Dreyfus 1987]

To sum up, Winograd was dealing with a view of language which was very optimistic
and designed to convince the world that natural language processing was a viable research
problem. Charniak was taking a somewhat more unpopular but realistic stand in looking at
the really hard problems we would eventually have to tackle if we were to deal with language
in any truly gencral sense. To digress for a moment, I would like to mention something ironic
about Winograd and Charniak. While Charniak was clearly the pessimistic foil to Winograd’s
optimist, it is amusing to note that Charniak remains extremely active and productive in the
field of natural language processing, whereas Winograd has ceased to make contributions to
Al, opting instead to investigate the philosophical implications of hermeneutics [Winograd and

Flores 1986].

We will look at Charniak’s thesis just long enough to note the general emphasis in that

research. Here’s a quote from the dissertation abstract:

“An earlier version of the model described in this thesis was computer imple-
mented and handled two story fragments, about a hundred sentences. The problems
involved in going from natural language to internal representation were not consid-
ered, so the program does not accept English, but an input language similar to the

internal representation is used.” [Charniak 1972]

To be blunt, Charniak’s program never analyzed sentences. In some sense, Charniak’s thesis




was not a thesis about language analysis a( all, although | view it as a milestone thesis for
knowledge-based language understanding. Charniak was looking at a set of problems which are
not specific to sentence analysis per se, but nevertheless key to understanding natural language.
Charniak was concerned with the problem of inference. That concern evolved into a driving
motivation for much of the research on knowledge-based natural language processing we’ve seen

over the last 15 years.

It is useful to contrast the two veins of research that were more or less initiated by Char-
niak and Winograd. There is problem-driven research and there is technology-driven research.
I’ll characterize problem-driven research as basic research designed for the long haul: given
the difficulties inherent in understanding language, what techniques might be of use to us in
surmounting these difficulties? Technology-driven research is the research of near-term appli-
cations: given the current state-of-the-art, what applications are appropriate for the existing

technologies?

SHRDLU was a wonderful example of technology-driven research. The blocks world lent
itself to techniques that were available at the time. But SHRDLU was just a prototype designed
to inspire further work. The contemporary offspring of that inspiration are found today in
database query interfaces. We have a technology-driven research program on natural language
interfaces which works (more or less), but is successful primarily because it does not need to

deal with natural language in its full generality.

To appreciate the problems of natural language in general, we have to understand what is
meant by the inference problem in natural language - the problem that made Charniak such
a pessimist about life outside the blocks world. Let’s take an example of a short narrative to

illustrate the problem:




“When the balloon touched the light bulb, it broke. This caused the baby to cry. Mary gave

John a dirty look and picked up the baby. John shrugged and picked up the balloon.”

This is a typical example of narrative text. We can analyze it in terms of its information
content by distinguishing explicit information from implicit information. We are explicitly
told about seven events in this story and one explicit causal relationship signaled by the verb
“caused.” But implicitly, there’s more information. There are at least six implicit events and
states that are present in the paragraph, eight implicit causal relationships, and six implicit

goal states or emotional states. (See figure 1).
|insert figure 1 about here]

For example, probably the balloon was inflated. Probably the balloon exploded when it
broke. There is an ambiguity associated with the pronoun when we are told “it broke.” Was
it the balloon that broke or the light bulb that broke? Most readers have no trouble under-
standing that the balloon broke. Furthermore, we might conjecture that the light bulb was
on and it was the heat from the light bulb that broke the balloon. These are all plausible
common-sense inferences people are able to make. But these are only assumptions and they are
assumptions that could be wrong. We will define an inference to be an assumption that could
be wrong. Technically speaking, this type of inference is known as defeasible inference, but for

the remainder of this talk we’ll just call them inferences.

Charniak’s interest in children’s stories was centered on the problem of inference generation.
Children are capable of highly sophisticated inferences which make children’s stories extremely
complicated for computers. Although the language in children’s stories may be relatively simple
in terms of syntax and vocabulary, the underlying processes of inference required to understand

a typical children’s story are not so casy to characterize. The basic problem has to do with




knowledge about the world. Children have a great deal of knowledge, although the magnitude
of this underlying knowledge base is largely unappreciated by people who have never tried to

get a computer to operate with comparable facility.

The general problem of inference generation inspired a lot of work in the mid-to-late 70s
devoted to identifying knowledge structures that could spawn inferences. During this period,
we saw progress that I would characterize as work in strong methods for natural language
processing. By this I mean to say that there was a strong precoccupation with specific knowledge
structures and knowledge-specific mechanisins of inference generation. We will briefly outline
the major contributions of that period since the work was highly influential, not only within
the Al community, but within cognitive psychology as well. (Eventually, we will get around to

looking at problems of sentence analysis per se.)

2 Knowledge Structures

The first knowledge structure that was proposed as a powerful device for inference generation
was the script [Schank and Abelson 1977]. Scripts have trickled down into the introductory

textbooks on Al, but if you’re not familiar with the concept, I'll run through it very briefly.

Scripts are designed to encode stereotypic event sequences. This is mundane knowledge
about some standard scenario for which a common linguistic community shares knowledge. So,
for example, we all have knowledge about going to the movies. And if I say to you, “I went
to a movie last night,” you are capable of generating a lot of inferences about what I did last
night which go far beyond the explicit information content of that sentence. You understand
that I must have had money to buy a ticket and the ticket was purchased at the theatre. 1 may

have had to wait in line for a bit before I could go into the theatre, but once inside I could have




bought popcorn, candy, or ice cream. I exchanged the ticket with an usher who gave me a stub

back ..

You have all these little facts about going to the movies. These are all assumptions that could
be wrong. But for the most part, these are the assumptions you have to make. And if we want to
create computers that can understand language, we have to worry about creating systems that

generate these inferences as well. This is the implicit information content underlying language.

A system called SAM was first implemented in 1975, which was given simple narratives and
then tried to generate inferences appropriate for those stories on the basis of scripts [Cullingford
1978]. SAM stood for “Script Applier Mechanism.” The architecture of SAM was fairly simple.
There was a parser that mapped sentences into an internal memory representation, in this case,
Conceptual Dependency [Schank 1975]. Then the actual script applier mechanism accessed the
appropriate scriptal knowledge structure and tried to fill in any missing implicit events in a
causal chain representation. “I went to a movie last night,” would be expanded into a very long
causal chain representation containing all the implicit events associated with knowledge about

movies.

SAM was a prototype program designed to demonstrate the utility of one particular knowi-
edge structure. That knowledge structure became somewhat controversial in terms of its gen-
erality. Where do scripts work? Where don’t they work? Are they appropriate for generating

all the inferences we need?

If we go back to our balloon story, we could, for example, hypothesize the existence of a
balloon script. Here is our stereotypic event knowledge about balloons: They start out in an
uninflated state. They get inflated in one of two stereotypic manners, they get tied, and then

they die a natural death in one of three ways (sec figure 2).




linsert figure 2 about here]

This is event-oriented knowledge about balloons. If we wanted to understand our little story
about the light bulb and the balloon using 1975 technology, we would simply match the explicit
input against the events described in the balloon script, and infer that the balloon was inflated
and tied before it broke. While these are undeniably nice inlerences to have, we wouldn’t know
anything about why the balloon broke or why it was reasonable for it to break. Indeed, if our
“light bulb script” included breakage as one of the stereotypic ways that light bulbs come to
an end, there would be no way of knowing which referent. (for “it”) was broken on the basis of

these scripts alone.

At the same time that scripts were being proposed by Roger Schank at Yale, Schank also
understood that scripts were not the solution to all of the problems of knowledge based inference
generation. He proposed other knowledge structures as well. For example, there was knowledge

about plans and goals.

If I told you I hired someone to clean my house, you could make a number of inferences
about exactly what that entailed. I had to find someone who would be willing to clean the
house, 1 had to approach this person, ask them to clean my house, there was probably some
negotiation over payment, and so on and so forth. All of these inferences are very general in
the sense that they would apply to anyone I might hire to do a periodic task for me, such as
mow my grass or do my shopping for me. Any number of tasks that keep popping up over
and over again could be handled in the same manner. So these inferences appear to originate
from a more general understanding of plans and goals. In this case, we have a problem of goal
subsumption (finding a solution to a recurring goal), and a solution in terms of agency (locating
an agent who will do the work for me). So plans and goals involve a level of abstraction that

goes beyond scripts, but which still allows us to characterize stereotypic situations {Wilensky




1978).

A well-known book came out in 1977 which put down in writing all of the ideas that were
floating around Yale at that time [Schank and Abelson 1977]. This was a book about knowledge
structures, more specifically, scripts, plans and goals, among other things. It was a seminal piece
of work insofar as it generated, by my count, ten Ph.D. theses in Al (there were probably a
comparable number of Ph.D.s in psychology as well). So there was a tremendous amount of
work along these lines in the mid and late 70s, and that work created a foundation for the more

recent research to which we now turn.

First, we’ll look at two different directions that took off after that initial foundation in
knowledge structuring was first laid. In so doing, we’ll see different knowledge structures: 1)
plot units [Lehnert 1981], and 2) thematic affect units [Dyer 1983b], both of which were designed

to produce summaries for narratives.

In both systems, we assume that multiple levels of memory representation are being gener-
ated in response to the input text. Sentences are translated into Conceptual Depende icy, and
inferences are generated via script application and the analysis of plans and goals. In t*2 case
of plot units, additional levels of abstraction are required to produce an affect state maj , and
finally a plot unit graph. The plot unit graph rests on top of all these “lower” levels of men-ory
representation which act, in turn, as conceptual scaffolding for the narrative summarization

task.

In the tradition initiated by Charniak’s thesis, most experiments run on plot units require
hand-coded memory representations at the lower levels in order to see anything of interest at
the level of a plot unit graph. Granting that, there is a program called PUGG (the Plot Unit

Graph Generator) which generates memory representations of the sort found in figure 3.

10




[insert figure 3 about here]

This is a plot unit graph generated in response to Arnold Toynbee’s synopsis of the New
Testament |Alker, et a. 1975]. Note that this graph could never be generated automatically
from the source text of the New Testament, given the current state of the art. Just the hand
coding of the knowledge structures would necessitate sacrificing an entire generation of graduate

students in an orgy of exploitation normally unheard of outside the biological sciences.

Each node in this graph represents an instantiated plot unit where plot units describe things
like competition between two characters, or one character’s successful resolution of a problem
situation. Arcs are created between nodes when two plot units depend on a shared component
from the affect state map. In this way, the plot unit graph provides a picture of the conceptual
connectivity across the narrative. Ideally, this graph will allow us to identify the salient and
most central concepts by looking at the topological features of the graph. For example, the cut
points in this graph are very important plot units for our story. The three major cut points for

the main body of this plot unit graph point to the following events from the New Testament:
(7) Jesus called on the people to support him.
(47) The authorities arrested Jesus.
(89) The authorities crucified Jesus.

If we wanted to produce a truly minimalist synopsis of the New Testament, we are perhaps
on the right track here, although we do not have the explanatory power to tie these three events

together into a truly self-contained blurb about Jesus.

We could elaborate on this skeleton a bit by invoking a minimal path algorithm to connect

11




our three cut points. These produce the following event-summary:
(7) Jesus makes an appeal to the masses for support.
(9) The government wants to maintain authority over the masses.
(10) Jesus causes a scandal.
(18) Jesus takes the law into his own hands to avenge God.
(47) The authorities arrest Jesus.
(89) Jesus is crucified.
(92) Jesus’ death is a triumph.
(93) Jesus is worshipped.
I am told that this is, in fact, a Marxist interpretation of the New Testament.

Let us now return to the other line of work on narrative summarization that relied on scripts,
plans and goals. As we saw with plot units, it is possible to produce narrative summaries based
on event descriptions alone, as long as you can identify the central events of the story. But there
are other kinds of summaries that operate on a more abstract level of understanding. Fables
are famous for the adages associated with them, and the ability to associate an appropriate
adage with a novel narrative is considered a hallmark of mature intelligence (understanding the
meaning of proverbs is a task used by the Stanford Binet IQ test as a standard for measuring

adult intelligence).

Research on thematic affect units addressed this aspect of narrative summarization [Dyer
1983a). Dyer claimed that adages are properly associated with abstractions at the level of plans

and goals. Each thematic affect unit deseribes a pattern of plan-oriented behavior, and if all the

12




required components of the pattern are met, the specific adage associated with that thematic

affect unit will apply.

So for example, a close call, which would perhaps be described by the adage, “a miss by an

inch is as good as a mile,” could be recognized via the following thematic affect unit:
(1) X experiences a major preservation goal, G.
(2) G was created in response to an event not intended by X.
(3) G is a fleeting goal so no recovery plan is required.

Note that a close call can be easily transformed into a regrettable mistake (don’t cry over
spilt milk) if G is not characterized as a fleeting goal and a recovery plan therefore becomes

appropriate.

It is interesting to note that a plot unit analysis can be performed without the benefit of
thematic affect units, and thematic affect units can be recognized without any of the effort
associated with affect state maps and plot unit graphs. These two approaches to narrative
summarization are fully independent of one another and simply reflect different types of sum-
marization tasks. As far as the computational models are concerned, skills with one task do

not predict seemingly associated skills in the other.

Plot units and thematic affect units both emerged from a large research effort centered
around a system named BORIS [Lehnert, et al. 1983]. BORIS attempted to integrate a large
number of knowledge structures in a single system, addressing the architectural problems posed
by multiple knowledge structures. The BORIS system, completed in 1982, marks the end of
the knowledge structuring era. For the most part, people stopped proposing new knowledge

structures at about that time, and interests shifted into other areas.

13




To understand why, we need only look at the diagram in figure 4 (taken from [Dyer 1983a)).
[insert figure 4 about here]

BORIS attempted to integrate no less than 22 different knowledge structures, each respon-
sible for generating its own class of inferences encoded with structurally-specific knowledge
representations, and using its own structure-specific inference mechanism. Figure 4 tells us
what lines of communication were open between the various knowledge structures. Each node
of the graph represents a generic knowledge structure, and each arc tells us when one knowl-
edge structure was allowed to talk to another one. Rather than having all possible pairwise
channels of communication open, we limit communication between knowledge structures and

impose some order on the potential chaos that would otherwise break loose.

Unfortunately, the rich diversity of the knowledge structures requires unique forms of com-
munication between sanctioned pairs of knowledge structures. No two arcs in this diagram are
quite the same in terms of the type of information being requested or the methods of com-
putation required to produce a response. Not only are there inference processes specific to
each knoﬁledge structure, but the communications between pairs of knowledge structures are

pairwise specific.

However impressive BORIS may have been as a tour de force in knowledge-based natural
language understanding, the word “elegant” has never graced any noun phrase describing the
flow of control in BORIS. “Ad hoc” was rather closer to the truth, and the difficulties of
continuing on in this vein were apparent to all. Suffice to say, no one ever attempted to re-
implement the BORIS system after Dyer completed his noteworthy thesis based on the system,
and no one associated with the original BORIS system went on to produce a son of BORIS. The

complexity of the architecture, the (ragile scaflolding needed to make it all hang together, and

14




the methodologically difficult business of engineering mundane knowledge for natural language
were all overwhelming. Although Dyer has never been accused of being a pessimist, his thesis,
published 10 years after Charniak’s, was another milestone destined to send the faint-hearted

elsewhere in search of smoother sailing.

I think a lot of people realized the implications of BORIS in 1982. Although there was no
way to walk away from the need for knowledge, the growing commitment to knowledge-based
natural language processing gradually shifted into a wistful longing for processes operating over
uniform knowledge representations, inference mechanism+ that transcend individual knowledge
structures, and elegant control mechanisms that can be explained within the confines of a single
page. Of course, there were always people in the field who felt compelled by these aesthetic
criteria: Winograd was involved in the development of KRL [Bobrow and Winograd 1977], and
even Charniak once described himself as a methodological “scruffy” with a “neat” struggling

to get out.!

3 Marker Passing

The excitement associated with PROLOG in the early 1980’s, and the more recent fever
surrounding connectionism, have both exerted a predictable pull over researchers in knowledge-
based natural language processing who felt a need to swing the pendulum back a bit from the
strong methods associated with wildly propagating knowledge structures. At this time we seem
to be swinging back in the direction of weak methods, with a clear question to be answered:
does the commitment to knowledge-based techniques necessarily force us into a technology

dominated by strong methods? Ten years ago the answer was maybe. Today we seem to be

!see (Abeiaon ‘1681') for the official e:iplénation of “scruffy” and “neat” as technical terms referring to method-

ological styles.
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saying maybe not.

In keeping with this general trend, we are seeing new work on homogeneous inference gen-
eration. The roots for this do go back, so we should take a little time to give credit where
credit is due. Probably the earliest reference is Quillian, who first promoted the idea of inter-
section search in a computational framework. This was followed up by Rieger’s thesis work, for
which Rieger was honored by being asked to give Computers and Thought Lecture at the 1975
IJCAL Let me talk a little bit about all of that so we can appreciate the significance of more

contemporary contributions to homogeneous inference.

The idea of an intersection search is fairly simple. Quillian is generally credited with the
earliest description of an intersection search algorithin [Quillian 1968], but we’ll introduce the
idea in the context of Rieger’s thesis because Rieger’s work is more on-target with respect to

inference generation [Rieger 1974].

Suppose we have a mmeaning representation for sentence S1, and a meaning representation for
a second sentence, S2. These two representations serve as input to Rieger’s program, MEMORY.
Each meaning representation then generates a first generation of immediate inferences, which
will each recursively spawn a second generation of inferences, then a third generation, and so
forth and upward and onward (gee whizz!) [Geisel 1950]. In theory, we can produce inferences

arbitrarily far away from the original input sentences.

In an intersection search, this recursive generation of inferences halts when we find a path of
inferences connecting the two input generators. If MEMORY can find a path of inferences which
starts at S1 and concludes at S2, then we have a good candidate for a causal chain between
the two sentences. That is, we have a string of causally connected events and states that take

us from one sentence Lo the next. So we might understand, for example, if the balloon touches
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the lightbulb (S1) and the balloon subsequently breaks (S2), then there is a causal chain going
from (S1) the balloon coming into contact with the lightbulb, to (S1') the balloon coming into
contact with a light bulb that is turned on, to (S1") the balloon coming into contact with a light
bulb that is turned on and hot, to (S2"') the balloon coming into contact with a hot object, to
(S2") the balloon being in contact with a hot object, to (S2') the balloon exploding as a result
of contact with a hot object, to (S2) the balloon breaking. If an intersection can be established

between S1" and S2"', we will have a causal chain analysis of the two sentences.?

When Rieger employed intersection search for inference generation back in the early 70s, he
was not working in a knowledge-based framework. Consequently, there was no knowledge in
MEMORY - certainly nothing we would recognize today as a declarative knowledge structure.
Rather, Rieger had 16 inference “molecules” that were responsible for the propagation of in-
ferences underlying the intersection search. If there was any knowledge in MEMORY at all, it
had to be buried inside the lisp code that realized these 16 inference classes. But in fact, most
of the inferences that MEMORY generated were based on simple manipulations of Conceptual
Dependency event and state descriptions, and none of those manipulations were dependent on
structures outside of the search space being generated during the intersection search. Despite its
name, MEMORY had no long-term memory, and the expanding circles of inference it generated

were basically pulled out of thin air (or at least 16 thin inference molecules).

If Rieger’s thesis looks weak from the perspective of knowledge-based systems, we must
remember that he intended to make a contribution regarding search. Indeed, he had an elegant

idea concerning the relationship between inference generation and causal chain construction: the

2In fact, Rieger’s meaning representation language (Conceptual Dependency) was not well suited for this
particular example, and MEMORY probably couldn’t have found this causal chain, but we’re just trying to

illustrate the general idea.
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construction of a causal chain was a search problem and the undirected generation of inferences
created the search space in which to operate. Both components were nicely addressed within
the simple framework of an intersection search. This emphasis on the algorithm for search
created a model about control, and the beauty of MEMORY’s control was its simplicity and

homogeneous generality.

Rieger’s work is important for us because it illustrates a weak method for inference genera-
tion based on a simple mechanism of great generality. We should also note that Roger Schank
was Rieger’s thesis advisor, and Schank has said that his work on scripts was strongly moti-
vated by what he perceived to be the fatal flaw in Rieger’s MEMORY: a lack of knowledge. In
Schank’s view, the real problems were inside those inference molecules (or whatever mechanisms
were needed to generate inferences). The key problem must be to understand the organization
of knowledge needed to create inferences. MEMORY was appealing, but sadly predicated on
the wrong framework for the problem of inference generation. II inference generation is es-
sentially a problem of search, then MEMORY should give us some answers worth pondering.
But if inference generation is better characterized as a problem of knowledge application, then
MEMORY must fall very short of the mark. If Rieger made a mistake, it was in asking the

wrong question more than in finding the wrong answer.

Now we can move.the clock up to 1987 and look at a program called FAUSTUS which
identifies 7 classes of inference and activates selected concepts throughout a potentially large
search space in an effort to identify useful inferences [Norvig 1987]. At first glance, this may
look like a reincarnation of Rieger, but we need to look a little closer. First we note that the
simple intersection search has been replaced by a more sophisticated marker passing algorithm.
The new algorithm looks like a step in the right direction (it narrows the potential scarch

space), yet we still have homogeneons control for inference generation. How is this possible?
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It seems that FAUSTUS benefited from all the work that followed and superceded Rieger
without sacrificing the weak method of homogeneous control. FAUSTUS utilizes extensive
amounts of knowledge, yet the intelligent manipulation of that knowledge is handled by a
marker passing algorithm that can be described in terms of a simple grammar. FAUSTUS
has a fixed memory which is rich in knowledge, but it is structured very carefully using a
knowledge representation language called KODIAK [Wilensky 1986]. When activation passes
from one concept to another, it must conform to a legal path “shape” specified by the grammar
in the marker passing algorithm. When independent markers collide at a shared node, the
resulting path of activated nodes provides useful inferences about the original input items. The
idea of the intersection search is still there - it’s just harder to generate false positives (bogus

intersections).

The best way I can give you a feel for FAUSTUS is by looking at an example. The following
example was manufactured for this talk and is undoubtedly all wrong as far as the details of
KODIAK and Norvig’s actual algorithm are concerned, but we’ll settle fc- ballpark accuracy

to get the main idea across.

Let’s go back to our overworked text about the balloon and the light bulb. The first sentence
was, “When the balloon touched the light bulb, it broke.” We have a reference to a light bulb,
a reference to a balloon, and physical contact between the two of them. That’s explicit in the
sentence. We also know something broke, but the pronoun leaves us up in the air as to exactly
what broke. It could have been the light bulb or it could have been the balloon. We would like
to be able to disambiguate the proncun and infer a plausible causal relationship between the
two events described. Figure 5 shows us what a meaning representation for the input sentence

might look like before any inferences are made.

[insert figure 5 about here]
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Now let’s look at some knowledge we should have available to us. We have knowledge about
breaking which tells us all the different ways things can break. For example, we can understand
that one way things break is by exploding. An exploding event is a further specification or
“concretion” of a breaking event, and this further specification is only valid under certain
circumstances. Using KODIAK, we can create inheritance hierarchies which encode structured
inheritance via role-play links. As we will see, this notion of structured inheritance will help
us make some irﬁportant inferences about what broke and exactly what the breaking event

describes.
[insert figure 6 about here]

We have a hierarchy of entailed event concepts going from breaking down to exploding, with
role-play links telling us how these structures are inherited. These hierarchies bottom out with
very specific event descriptions: specific, for example, at the level of a balloon exploding (see
figure 6). And we understand that there’s a constraint on the balloon exploding event that
the object of any such event must be a balloon. This is not a constraint available to us at the
higher levels, where we may only be constrained by the specification of an inflatable object, or

even more generally, a physical object.

A hierarchy with these richly constrained specifications allows us to generate concretion
inferences which help us see beyond the explicit meanings available to us from the source text.
For example, if we are told that a balloon broke, we should be able to infer the constraints
operating at low levels of greater specificity in order to understand that if the object of a

breaking event was a balloon, then it may be safe to assume that the balloon exploded.

Concretion inferences are one of the inference types handied by FAUSTUS, but the simple

inheritance mechanism described above cannot resolve complicated ambiguities of the type
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present when we have to understand what i, was that broke in the first place. In our original
text, we have to decide between a balloon breaking or a light bulb breaking. It is nice to know
that the balloon would break by exploding, whereas the light bulb would break by shattering

(see figure 7), but we still have to decide which object we think we’re dealing with.
[insert figure 7 about here]

If we really want to resolve the reference, we have to drag in more knowledge. So let’s

assume we have knowledge about balloons (see figure 8).
[insert figure 8 about here]

This is somewhat reminiscent of the balloon script we discussed earlier. We understand that
one of the things that can happen to an inflated balloon is that it might come into contact with
a hot object, in which case we can make a pretty fair prediction about a causal relationship
with a balloon exploding event. The preconditions for this balloon exploding event can be
obtained from the light bulb if we understand that a light bulb can be a hot light bulb, and
that hot light bulbs are further specifications under turned-on light bulbs. With appropriate
inheritance inferences (including the fact that a touching event is a further specification for
physical contact, and the fact that an inflated balloon is a further specification for a balloon),
we might manage to fill out a casual chain if all the pieces are available to us in memory and

the paths of relevant inference are recognized by the marker passing grammar.

As this example shows, FAUSTUS attempts to marry extensive knowledge access to a ho- |
mogeneous control structure realized in terms of marker passing. The approach represents an
appealing synthesis of two seemingly contradictory directions: the weak methods of homoge-
neous control and the strong methods associated with large amounts of knowledge. However, it

is difficult to say what happened to the strong methods associated with traditional knowledge
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structures when we encoded our knowledge base in KODIAK. Can a marker passing algorithm
achieve the computational power of a script applier mechanism? Can generic concepts be
instantiated and utilized by multiple referents without getting confused? What if our story
references two balloons and we have to keep distinct concretions straight? These are questions
about the possible limits of marker passing algorithms. The homogeneous control is great, but
is it powerful enough for our needs? These are questions we need to answer about marker

passing as a weak method for inference generation.

4 Syntax and Semantics

We’'ve been talking a lot about inference generation, but it would be a mistake to assume
that’s all there is to knowledge-based natural language processing. In fact, homogeneous control
for inferences really goes hand in hand with homogeneous control for other problems. For
example, we are also secing a trend toward homogeneous control for the integration of syntax
and semantics, a problem which is very important for models of sentence analysis. Let’s see
how some people have worked to bring homogeneous control back down to the level of sentence

analysis.

What do you usually see when you look at a textbook on Al with a section devoted to
natural language processing? There’s a good chance you’ll see a flow of control diagram that

looks something like this (see figure 9).
[insert figure 9 about. here]

Here we see Lthat the probletn of sentence analysis has been divided into specific modules.
]
We have syntactic knowledge - knowledge about grammar - that is important in analyzing the

structure of a sentence. We also have semantic knowledge, which is where concept frames are
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deﬁn?.d, and various constraints operate to control the slot fillers for those frames. And we
often sce a reference to pragmatic knowledge, which is where all the common sense reasoning
needed for inference generation resides. Pragmatics is also where kncwledge about discourse
is stored. Generally speaking, pragmatic knowledge is defined to be anything we need which

wasn’t already covered by syntax and semantics.

The flow of control that we see here is serial control. This is a nice modular idea about
language analysis which lays out the pieces clearly and simply. Unfortunately, systems built
along these lines just don’t work very well. Serial control is used for some database interfaces,

but it doesn’t work for continuous narrative text at all.
To see why not, let’s look at a couple of sentences (see figure 10).
[insert figure M0 about here]

The sentences I’'m interested in are, “John took her flowers” and “A stranger took her
money.” These two sentences are syntactically identical, and they are syntactically ambiguous
as well. “Her flowers” could be a single noun phrase, or it could be an indirect object followed
by a direct object. Similarly, “her money” could be a single noun phrase, or it could be an

indirect object followed by a direct object.

When Mary is in the hospital, we understand, without effort or conscious thought, that
John brought flowers to Mary. The sentence contains an indirect object and a direct object.
But when Mary is in Central Park, we see a single noun phrase operating. as a direct object.
Somehow we fail to consider the absurd possibilities of John taking lowers away from Mary in
the hospital, or even sillier, the possibility that a stranger could walk up i,o Mary in Central

Park and hand her money.

Apart from the syntactic ambiguities confronting us, we also have a lexical ambiguity as-




sociated with the verb “to take.” In the hospital this verb means “to bring,” while in Central
Park we understand it to mean “to take away.” This is a strictly semantic ambiguity which

forces us to choose between competing word senses.

So we have two interesting ambiguities operating here. We have a syntactic ambiguity that
needs to be resolved, and we have semantic ambiguity associated with multiple word senses.
Both ambiguities must be resolved in order to arrive at appropriate interpretations for the

sentences.

How do we do it? Well, first we note that there are useful relationships between syntax
and semantics. When “take” is used to mean “bring,” it predicts a different set of syntactic
constituents than when “take” is used to mean “take away.” When you take something away
from someone, you can’t have an indirect object. This means that a resolution of the semantic
ambiguity will automatically take care of the syntactic ambiguity as a natural side-effect. Once
we know what the verb means, we’ll know how to parse the sentence syntactically. We’ll return

to the problem of knowing what the verb means in a minute.

In the meantime, notice that we’re already in trouble using our serial architecture. This
architecture assumes that all the syntactic decisions are made before we even look at the
semantics of the sentence. The dependency is running the wrong way. If we stick with this
architecture, we’'ll have to allow the syntax module to operate nondeterministically, handing
multiple parse trees over to semantics in the hope that semantics can decide which one is

appropriate.

This is, in fact, exactly what a lot of language processing systems do. In the “syntax-first”
tradition, whole sentences are analyzed syntactically, and multiple parse trees are passed on for

further analysis, making the job of semantic analysis a job of sorting through all the parse trees.

24




When sentences contain prepositional phrases, reduced relative clauses, and other sources of

rich syntactic ambiguity, the number of syntactic parsc trees available to us can easily run into

the hundreds.

Most researchers in knowledge-based natural language processing reject the syntax-first
approach to sentence analysis and strive to integrate syntax and semantics in a more natural
and effective manner. But once we open the door to integrated models of sentence analysis, we
must necessarily ask whether the problem is restricted only to syntax and semantics. After all,

just how do we decide what word sense for “took” is the appropriate one?

It seems that the answer to this question must be obtained by using a lot of knowledge
about the world. Although you may not have thought about it, you make an inference when
you hear “Mary was in the hospital.” Probably, Mary was a patient in the hospital (note
that this could be wrong). It follows that Mary was probably sick o1 injured. And there’s a
tradition in our culture about people who are sick or injured. Friends and relatives usually send
something to cheer up the invalid: cards and flowers are traditional items. All of this is useful
in disambiguating tue proper word sense in “John took her flowers.” Given the strong context
surrounding the sentence, we might reasonably expect to be dealing with a bringing event as

soon as we hear “John took ...”

On the other hand, we also have knowledge about Central Park. We all have a strong
association between Central Park and muggers, we know what a mugging is, what the goals of
a mugger are, and we know that pedestrians in Central Park are at risk. All of this is available
to most adult Americans because it’s a part of our shared culture. And this is the knowledge
that helps us to understand the appropriate word sense for the verb when we hear “A stranger

took ...” in the context of pedestrians and Central Park.
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If we define pragmatic knowledge to be the basis for inference generation, then we have to
integrate not just semantics with syntax, but semantics and pragmatics with syntax as well.
For this reason, many people believe that the line between semantics and pragmatics is not
well-motivated: there is no good basis for distinguishing semantic knowledge from pragmatic

knowledge if you are going to work within an integrated framework for sentence analysis.

People who are interested in this integration problem are interested in ideas for control.
How are we going to integrate the top-down processes which are knowledge-based with low-
level bottom-up processes which are not knowledge based? Although there are many answers
to this question based on co-routines and message passing, it has been difficult to find solutions
that are truly elegant and readily adaptable if your grammar changes or your theory of semantics

begins to shift.

However, two interesting approaches to this problem have surfaced very recently, and I'd
like to give you a rough feeling for those solutions. I am not convinced that anyone has a good
solution to the pragmatic context effects we’ve been looking at in figure 10, but we can at least
see progress at the level of syntax and semantics with hopeful hand waving aimed at pragmatic

interactions.

In the first case, structured inheritance is being pushed as a key mechanism for integrated
sentence analysis. This approach argues that the key to the problem lies in the correct design
and organization of our knowledge base. For example, a selling event can be characterized in
terms of two transfer events, where the object of one transfer is money and the object of the
other transfer is merchandise. The sources and recipients for these two transfer events constrain
one another by exchanging roles, and at a very high level of abstraction, each of these transfer

events are instances of some very vague cvent which corresponds to the primitive ATRANS

in Conceptual Dependency. Figure 11 shows how all of this knowledge about selling might be
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represented using KODIAK.
[insert figure 11 about here]

In KODIAK diagrams we use a bit of shorthand which is important to understand. When-
ever you see a named link like the actor link in figure 12, that’s actunally a shorthand notation
for structured inheritance via a role-play link. It’s very cumbersome to work with the fully
expanded notation all the time, so the shorthand notation is useful, but we must remember

that this shorthand implies a structured inheritance that is not explicit in the diagram.
[insert figure 12 about here]

What we’re trying to do here is create a very systematic and highly constrained style of
knowledge representation through which we inherit a lot of implicit structure as needed. Let’s

try to look at some examples of this in action.

Selling is interesting because it’s two transactions, and both of those transactions are trans-
fers. We have some very high level of generality, a transfer of an object from one person to
another, or from one entity to another. And in one case, the transfer is a merchandise transfer,
so have an object of barter being moved from one person to another. In the other case, moving
in the opposite direction is a transfer of tender: money is changing hands. If we’re very careful
with our representation, we can understand how these two transfers relate to one another. They
are not iéolated transfers. Rather, they are connected through a series of links that identify
specific roles, such as customer, merchant, merchandise, tender. Whenever there’s a selling
event, we implicitly know that four roles must be present, whether we can instantiate them

with referents or not.

While this network is designed to represent semantic information, the idea of structured

inheritance networks has been applied to traditionally linguistic (syntactic) knowledge as well




[Jacobs 1987a). 1t is possible to take knowledge about grammar, the rules for recognizing legiti-
mate sentence structure, and encode that knowledge in a KODIAK network utilizing structured
inheritance. Once this is done, we have our linguistic knowledge together with the semantic

knowledge within a single representational framework (see figure 13).
[insert figure 13 about here]

Concretion mechanisms (or any other marker passing algorithm) that worked for inference
generation can now be applied to syntactic structures as well since the underlying data struc-
tures are indistinguishable. Whether all such mechanisms generalize to useful applications is

another question, but at least we are now in a position to ask.

Although we are concentrating here on techniques for sentence analysis, it is interesting to
note that the integrated KODIAK structures we’ve been discussing are used for both sentence

analysis and sentence generation |[Jacobs 1987bh).

Although Jacobs is probably the first researcher to investigate highly integrated methods
for syntactic/semantic processing from the two perspectives of analysis and generation, he was
not the first to work with a uniform representational framework for sentence analysis. The
earlier Word Expert Parsing effort [Small 1980] deserves to be mentioned along with related
work on lexical access [Cottrell and Small 1983] which focused on the problem of word sense

ambiguity.

A very different approach to the problem of integrating syntax and semantics can be found
in an effort which was strongly influenced by Cottrell and Small’s earlier work. Waltz and
Pollack [Waltz and Pollack 1985] picked up where Cottrell and Small left off, and tried to
generalize connectionist. techniques into higher levels of sentence analysis. While we have seen

a lot of exciting work by connectionists on sentence analysis within the last year or two (see for




example, McClelland and Kawamoto 1986), I've chosen to talk about Waltz and Pollack because
the techniques they use are much more accessible to an Al audience without an introductory

tutorial on connectionism.

Waltz and Pollack work with large, knowledge-rich networks in their system, but these
networks are not as carefully structured as the KODIAK networks we saw before. Indeed, one
of the weaknesses of this system is it’s lack of inheritance in any form. There are no theoretical
claims about knowledge representation here either: one could invent a node for any sort of

frame with additional nodes for any kind of role or slot constraint imaginable.

The key idea here is spreading activation and network relaxation. But now the activation
is analog activation which means that nodes are given numerical values to indicate how much
activation is present at any given time. Relaxation is the process of systematically adjusting
activation levels within the network until the network assumes a stable state. A stronger
connectionist flavor is obtained by the use of lateral inhibition to expedite the stabilization of
competing nodes where activation levels are expected tu be mutually exclusive. If we appear to
have walked off some sort of cliff in terms of your familiarity with these terms, that’s probably
because this is a numerical algorithm and not the sort of thing we normally associate with

“mainstream” symbolic Al
[insert figure 14 about here]

Consider, for example, an eating node, which has arcs leading out to role nodes that rep-
resent things like agents and objects (see figure 14). When we understand the sentence “Mary
ate spaghetti with Sue,” we want to see the network stabilize with a high level of activation on
this eating node as well as the appropriate slot filling nodes. It is important to settle on a high

level of activation for the co-agent node lest we interpret Sue to be a co-object (like meatballs)
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or instrument (like fork) for the eating event. If all goes well, semantic constraints within the
network will push the relaxation process in the right direction, and inappropriate pathways in

the network will die off for lack of sufficient activation.

If ever there was an algorithm to illustrate homogeneous control, numerical relaxation must
be it. This idea can be applied to networks of nodes representing anything you want. We can
have different nodes for different word senses, other nodes for semantic features, and even nodes
for traditional syntactic constituents. Plug in a grammar by wiring the nodes correctly, and

you can produce syntactic parse trees as a side-effect of network relaxation (see figure 15).
[insert figure 15 about here|

Within this framework we integrate semantic constraints and syntactic constraints in a
massively parallel architecture that can readily compute a global assessment of the situation
after each word of the sentcnce is received. Preferred word senses and syntactic preferences may
shift around as we move through the sentence, making it possible to run interesting experiments
by taking “snapshots” of the network as we move through a sentence. Activation levels from
a syntactic constituent may inhibit or support a specific semantic interpretation, and semantic

preferences can flow back toward the nodes deciding about syntax.

This provides us with a very nice framework for investigating a lot of problems, and in
particular, garden path processing phenomena are especially well suited for analog spreading
activation models. Of course, all of the problems we have with marker passing algorithms
apply here as well: e.g. what happens if two different referents activate the same sections of the
network? In fact, the interference effects associated with analog activation are even worse than
with marker passing algorithms because we have to make sure that nodes “die out” within a

reasonable period of time by tweaking the numeric algorithm. In a marker passing framework,
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a node can be told to die after a fixed number of words have been parsed or after a specific
marker like a clause boundary is encountered. In the symbolic paradigm it is at least easier to
understand why a node is turned on or off. In the analog paradigm, the status of each node is
dependent on the status of every other node in the network, making the whole business rather

inscrutable.

Now that we’ve seen how syntax and semantics might be intertwined under homogeneous
control, let’s return to the issue of pragmatics and how processes of inference might be inter-
leaved with processes of sentence analysis. As I said earlier, I don’t think a lot of progress has
been made in this area. Waltz and Pollack have designated a subset of their nodes as “con-
text nodes,” but it is difficult to evaluate the utility of that idea in the absence of a systematic
methodology for building large, massively parallel networks. Probably the best I can do is show
you some more places where “high-level” knowledge must be allowed to influence “low-level”
decisions about syntax. One of the places where this appears to happen involves analogies and

the role of analogical thinking in natural language.

5 Analogical Reasoning and Language
“Her hair was like lamb’s wool, her teeth were like pearls.”

We’re supposed to understand from this that her hair was soft and her teeth were white.
We’re not supposed to conclude that her hair was white and her teeth were hard. One discovers
that the mapping of a sentence onto appropriate analogical features is not such a simple business.

Perhaps her hair was smelly and her teeth were very round?

We heard a survey talk earlier today by Deidre Gentner on analogy. Analogical reasoning

is a major problem in natural language communication, and we don’t have to reach for poetry
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to find instances of it. In fact, it’s much more common than you might imagine. Sometimes we
see it explicitly, in the example above. The word “like” warns us that we may be talking about

an analogy and we’d better get the mapping right. But analogies can also operate more subtly.

For example, idioms often rely on analogies of one sort or another. I can pick up an article
in the newspaper and read about a conflict in the Middle East: “Despite the fact that the
two factions had been fighting for 20 years, they finally agreed to bury the hatchet.” This is
a standard idiom. Everyone understands what is meant by it. Or we can go back to Mary in
the hospital. Maybe after John took her flowers, she took a turn for the worse and kicked the
bucket. Another idiom. In fact, there were two idioms in there. Nobody I know can take a

turn for the inferior.

For a long time, no one in Al had much to say about idioms. They were just conventionalized
and fossilized expressions in the language - a part of the phrasal lexicon that had to be learned
case by case. But if you look at it with analégy in mind, there are some very interesting
phenomena associated with idioms. To be precise, there appear to be some rules that govern

the syntactic flexibility of idioms, and those rules are based on analogical reasoning processes.

First, we must, understand that some idioms are more fossilized than others. The burying of
the hatchet can be passivized: “After the peace talks, the hatchet was buried.” The kicking of
the bucket cannot be passivized: “After a long illness, the bucket was kicked by Mary.” That’s
just not an option. One of these idioms can tolerate a syntactic transformation while the other

can’t.

In a recent Ph.D. thesis we find a claim about this |Zernik 1987]. The key question is
whether or not a given idiom can be explained via analogical reasoning. If an idiom can be

explained, then it will be syntactically flexible. If it can’t be explained, then it will be brittle.




Let’s look at this in a little more detail.

In the case of the hatchet, we have associations and we have knowledge. You always have
to have knowledge in order to have an analogy. And the knowledge that’s relevant here is
knowledge about war. One can imagine a war script, where we have stereotypic events. You
have some initial conflict, you gather your troops, you attack, you defend, you win, lose, draw,
you establish an agreement, and you bring your troops home. Somehow, we have to get from
burying the hatchet, which is a very specific literal event, to the withdrawal of armed troops.
If we can make that connection, then the hatchet operates as an instrument of aggression (just
as the armed troops are a symbol of aggression), and burying the hatchet translates into a

deliberate disarmament, a halt to aggression.

How do you make those connections? This is a very difficult problem for knowledge repre-
sentation and memory organization. We could call it a concretion problem, but that doesn’t
exactly solve anything. Is there an abstract event that dominates both troop withdrawals and
hatchet, burials in some massive inheritance hierarchy? If we go up the abstraction hierarchy
too far, all events will map to all other events (because they’re all dominated by some very

general event node way up at the top).

Concretion by itself is probably too powerful a mechanism in the sense that it could be used
to make sense out of idioms no one ever heard of. If burying a hatchet is a further specification
of weapon burial, then burying a rifle should be recognized just as easily as burying the hatchet.
Somehow we lost track of the fact that one of these is an idiom and the other is not. What
distinguishes the one from the other is an instance (real or plausibly constructable) where
someone actually buried a hatchet following a conflict. Perhaps we all remember a story about
the pilgrims and the Indians from our 4th grade history lessons. It’s at least conceivable that

an Indian might have buried a hatchet in a war ritual. To bury a rifle is to impose an event
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from a ritually rich culture on an object from a culture largely lacking in symbolic rituals. The

mismatch arouses cognitive inconsistency and seems disturbing.

Ignoring the very difficult problems associated with analogical reasoning, we can hypothesize
that some such processes take place. Or at least the} take place for the idioms that can be
explained. If we had to explain “burying the hatchet” to a child, we would probably describe
a scenario where a hatchet got buried to symbolize the end of physical aggressions. But what
would you do if someone asked you to explain “kicking the bucket?” Most people explain this
one by saying it’s just an expression (don’t bother me kid). There is no analogical mapping
that gives us a plausible explanation for why death is associated with kicking a bucket. Most

of us do not know of any such explanations and can’t construct a plausible one even if ‘we try.

So why should any of this matter to a syntactic transformation? The fact that some idioms
are syntactically flexible while others are not suggests that the processes associated with the
two types of idioms are very different. "An explainable idiom is understood at a deep conceptual
level ... the idiom maps into a conceptual structure retrieved by analogical reasoning. An
inexplicable idiom is understood (she kicked the bucket —> she died) but not explained by

analogical mappings.

When an explanation is available, ali of the language processing power available for the
targeted conceptual structures can be applied. The explanatory concept underneath the idiom
can be expressed using a variety of syntactic structures, and this makes the idiom receptive to
syntactic transformations. When no explanation is available, there is no underlying concept
associated with the idiom, and so there is no language processing capability that applies. Brittle

idioms lack the conceptual scaffolding required to loosen them up.

Before we leave the topic of analogical reasoning, | want to give you some more examples of
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its utility for natural language. One way that analogical reasoning creeps in is via metaphor.
Metaphors are abundant in natural language, and so pervasive we don’t even notice them most
of the time. For example, it is common to assume that techuical literature is characterized by
very dry and literal language. If there is one place where metaphors might not intrude, it must

be when people discuss technical or scientific concepts.

Surprisingly, technical descriptions are often very rich in metaphors. Consider, for example,

the language we commonly use when talking about computers:
You can get into the editor by...
1 ran it through spell to...
The editor dted when...

If you have a language processing system that assumes only living things can die, you’re
going to have a lot of trouble with a sentence like “The editor died on me.” [Wilensky, Arens

and Chin 1984

Oliver North has given us a beautiful example of how intitnately inierdependent language
and analogical reasoning can be. If you were listening to the Congressional hearings last week
you heard Col. North explain a misunderstanding he had about the term “delete” in the context
of electronic mail. He thought that when you pushed the delete button, the mail really went

away.

I suspect that this faulty interpretation of deletion was the direct result of an analogical
mapping to a bad analogy. Given the rest of his testimony before the Congressional hearing, it
seems quite likely that Col. North mapped the delete command in his mail system to the on
button of a paper shredding machine. When you turn on the shredding machine, things really

do go away. Unfortunately, shredding machines are not very good models for what happens to
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electronic mail. If Col. North had ever worked with icon-infested software of the sort found on
personal computers, he might have mapped the delete command to a wastepaper basket, and
been more concerned about the security of his deleted documents for the same reason that one

should worry about wastepaper baskets.

I do not mean to disparage Col. North or his memory organization. This kind of misun-
derstanding happens to all of us and it’s especially dangerous when a word appears to be so
simple. How do people usually explain something like a delete command? When you say delete,
the message will go away. When you delete a message you throw it out. Deleting a message
destroys the message. None of these explanations are quite correct but how many of us really
want technically correct explanations? Natural language communications are generally very ef-
fective in trading off accuracy for brevity. But every so often the trade-off slips up and mistakes

result. What’s amazing is how we all get by as well as we do.

6 Episodic and Semantic Memory

Let me close on a topic that is in keeping with our theme of homogeneity. In addition to
homogeneous control, we can talk about homogeneous memory. There’s some very interesting
work which I think is just beginning to get off the ground. The one example that I'll draw from
in order to illustrate what I’'m talking about is some recent work done at Yale [Riesbeck and

Martin 1986).

Traditionally, people who talk about memory make a distinction between semantic memory
and episodic memory. To understand this distinction, let’s think about how we might go about
answering a simple question. Suppose | ask you, “Does a penguin have skin?” If you have a

semantic memory available to you that involves penguins, you will understand that a penguin
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is a type of bird, and as a bird, it has specific features, one of which is skin. If you have any
kind of retrieval algorithm available for answering questions, you wilt traverse links of this sort

in order to confirm that penguins do indeed have skin.

Now suppose I ask a very similar question. What about a chicken? “Does a chicken have
skin?” Now, if you have semantic memory, you're going to answer the question much the
same way you answered it for penguins. You won’t have associations available to you about
Antarctica, but you’ll find chickens, you’ll find birds, you’ll find features for birds, and you’ll

find skin. Just like before. This is the semantic view of memory.

However, a number of people believe something else goes on, that perhaps semantic memory
can sometimes be short-circuited by something much scruflier called episodic memory. Episodic
memory has to do with personal first-hand experience with the world. For example, dinner last
night is a good example of episodic knowledge. If dinner last night happened to be fried chicken
and you really like the skin on fried chicken, you might have a much faster path for answering
the question about chickex skin than the one available through semantic memory (see figure

16).
[insert figure 16 about here]

Traditionally, semantic knowledge and episodic knowledge have always been thought to be
in competition with one another: these are two distinct views of memory and there really isn’t

room in this world for both of them to coexist peaceably [Tulving 1972].

But very recently we’ve begun to see some work which seems to blur the semantic/episodic
barrier and cross lines between the two without any trouble at all. We've already seen some
of this with FAUSTUS. What sort of a node is the node that represents balloons exploding?

An exploding balloon sounds pretty episodic. Yet two steps up the hierarchy we’ll see general




nodes for explosions and breaking events. Nodes like that are commonly found in semantic
networks. If we examine the memory structures engineered for FAUSTUS, it seems that the
task of inference generation needs both types of memory and would be badly impaired if forced

to function without one or the other.

Now let’s get back to Riesbeck and Martin to see how the semantic/episodic issue relates
to sentence analysis. Before describing their system, DMAP (Direct Memory Access Parsing),
Riesbeck makes an interesting claim about language analysis at the level of sentence compre-
hension. le points out that there are really two distinct views about what it means to analyze
a sentence. In one perspective, we think of a sentence as mapping into existing concepts in
memory. That is, you really only understand this sentence because you have knowledge in
memory which allowed you to make sense out of it. Then when you understand the sentence,
the very act of understanding the sentence operates to reinforce or modify existing structures in
metmory. This view of sentence analysis might not sound terribly controversial, until you realize

that virtually every sentence analyzer ever implemented operates under different premises.

In most models of sentence analysis, sentences do not map directly into memory. They
creale meaning representations, and these meaning representations may be influenced by some
form of memory, but the act of sentence analysis rarely has any side-effects that alter memory
as the target meaning representation is being produced. The processes that analyze a sentence
are normally segregated from the processes that alter memory (if indeed, any process is capable

of altering memory).

Riesbeck characterizes the traditional framework as the “build-and-store” approach to sen-
tence analysis. He calls the non-traditional framework the “recognize-and-record” style of sen-
tence analysis. He then goes on to argue that it would be much to our advantage to investigate

recognize-and-record models of parsing as a wholly new style of parsing that lends itsell more
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naturally to a truly memory intensive view of language.

In fairness, we should point out that the Waltz and Pollack parser falls somewhere in between
build-and-store and recognize-and-record. Their analyzer produces a pattern of activation over
its entire memory. Indeed, it may be very difficult to interpret this pattern of activation should
anyone ever need to know what a particular sentence means. So Pollack and Waltz are certainly
not consistent with the build-and-store paradigm. On the other hand, the changes made to
memory as a result of sentence analysis are completely transient and wiped out each time a
new sentence is processed. So this is not exactly consistent with the recognize-and-record idea
either. Yet the connectionist enterprise in general is clearly operating within the recognize-
and-record paradigm if we look at the learning algorithms that adjust weights and modify the
network each time a new sentence is processed. The radical view that Riesbeck advocates is

really only radical within symbolic Al circles. Connectionists would feel quite at home with it.

To see how Riesbeck and Martin try to realize a recognize-and-record model using symbolic
techniques, let’s look at one of their example sentences. Here is a picture of DMAP’s memory

(see figure 17).
[insert figure 17 about here)

DMAP has some knowledge about newspaper articles taken from newspapers. The sentence
we are now trying to understand is, “Interest rates will rise as an inevitable consequence of the
monetary explosion.” This is a quote from Milton Friediman in the New York Times. Figure
17 shows us the portion of DMAP’s memory which is important for understanding “(Milton

Friedman says) interest rates will rise ...”

At the highest level of memory, we can characterize this sentence as a transfer of information.

Somebody said something. This is a highly abstract characterization of the input sentence. As
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we move down to a more specific representation, we further understand the sentence to be an
opinion by an economist. Even more specifically, a prediction by an economist. And more

specifically again, a prediction by Milton Friedman about interest rates.

Looking at figure 17, we can see an inheritance hierarchy that gives us all the further
specifications needed to represent the input at various levels of abstraction. If we start at the
top node for a communication event, filling in the details becomes something like a concretion
problem. Of course, memory will only look like this if DMAP has already seen other stories
about Milton Friedman making predictions about interest rates. Given such knowledge, the
act of mapping our new input sentence into memory becomes an act of recognition: 1 see now
... this is another interest rate prediction by Milton Friedman. DMAP shows how a sentence
analyzer can work with memory in order to situate the content of a sentence within an existing
framework for memory. The algorithm is a marker passing algorithm, and DMAP shows us

what sentence analysis might look like within a memory-rich recognize-and-record paradigm.

Let’s take one more look at the nodes in this tree structure (see figure 17). Altkough the
root node for a communication event looks very generic and therefore semantic, nodes further
down the tree structure look more and more episodic. We have a node for all the names we
know with the first name Milton. We have a node for economic predictions by Milton Friedman.

This is completely episodic.

At some point, we've crossed the line and moved from nice, clean, semantic knowledge
down to scruffy, first-hand experience knowledge of Milton Friedman and what he’s said in the
past. In fact, the marker passing algorithm in DMAP was designed with two kinds of memory
organization in mind: abstraction hierarchies and packaging hierarchies [Schank 1982]. The
abstraction hierarchy is the traditional is-a hierarchy we see in semantic networks, and the

packaging hicrarchy handles stereotypic chronologies of the sort we first saw with scripts - this
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is clearly episodic knowledge.

So an interesting line gets crossed in DMAP, and there are important implications when
you cross that line. One of the implications has to do with knowledge acquisition. If you are
willing to cross that line and benefit from the advantages associated with it, then you necessarily
have to worry about knowledge acquisition. Because every time you understand a sentence,
you should add another instance of something to your knowledge framework. The tenth time
you read about Milton Friedman predicting interest rates will rise, you should feel that the
concept is somehow more familiar than it was the second time around. You are automatically
in the learning business at that point. Earlier work on generalization and dynamic memory
organization come to mind [Lebowitz 1983]. But this is a not a standard perspective on sentence
analysis. Most researchers in natural language processing and even knowledge-based natural
language processing would not claim to be working on learning or knowledge acquisition. So

this is a really a radical view of language being promoted here.

7 Conclusions

That brings us to our wrap-up. I've tried to point out some trends over the last 15 years.
-4 p-up P

It is possible to associate the trends with roughly 5-year cycles starting in 1972.

The first cycle (1972-77) was characterized by a preoccupation with strong methods address-
ing specific knowledge structures and processes of inference associated with specific knowledge
structures. Ph.D. theses by Charniak and Rieger motivated much of this work, and Schank
organized a large research group at Yale to identify knowledge structures for natural language

processing.

The second cycle (1977-82) was characterized by a gradual appreciation for the implications
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of language processing based on strong methods alone. Dyer’s thesis gave us a taste of the
price we would have to pay in terms of system complexity if the strong methods continued to
propagate without other kinds of processing techniques. At the same time, powerful ideas based
on the earlier impetus toward strong methods were being pushed hard and refined in a number
of cc;mputer implementations. Jaime Carbonell, Richard Cullingford, Gerald DeJong, Michael
Dyer Richard Granger, Janet Kolodner, James Meehan, Mallory Selfridge, Robert Wilensky
and I, all finished theses at Yale during this period. The pendulum was poised to swing back

from there.

The third cycle (1982-87) fueled a renewed interest in weak methods - techniques for homo-
geneous inference generation, homogeneous memory organization, and broad processing tech-
niques of great generality. Marker passing algorithms enjoyed a lot of attention during this
period and progress by connectionists was greeted with cautious enthusiasm. Spreading acti-
vation became a common theme in a lot of the original research of this period. James Hendler,
Graéme Hirst, Paul Jacobs, Peter Norvig, and Jordan Pollack, all completed theses consistent
with the Zeitgeist of this cycle. Work by Gary Cottrell and Steve Small received attention for

earlier work which surfaced “before its time.”

So where are we going in the next five years? It’s always safer to wait for 20-20 hindsight,
but I'm willing to stick my neck out and iinagine a future that would at least would not surprise

me.

e | expect to see a push toward knowledge acquisition as an active concern in knowledge-

based natural language.

e The symbolic community will grapple with the questions raised by connectionist research:

What are the essential issues in the symbolic/subsymbolic paradigm struggle? Should
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we all see the light and becoine connectionists? Should the connectionists see the light
and forsake connectionisin? Given the unlikelihood of those two scenarios, how will the
two communities come to view each other and the relationship between their distinctive

research paradigms?

e Somewhere in the midst of all this, theoretical progress might be made on the episodic/semantic
distinction. More and more people will find it convenient to acknowledge the utility of
both memory types and design algorithms that move freely between them. This will be
viewed either in terms of an integration of two distinct memory types, or a demonstration
that the original distinction cannot be supported by computational models (it was a bad

idea in the first place).

o Finally, we may see some serious efforts aimed at evaluating our models and understanding
the qualitatively different contributions that are being made by different research styles.
The neat/scruffy dichotomy may give way to some other, more timely wedge, as more
and more people find it difficult to pigeon-hole themselves as card-carrying neats or free-
spirited scruffies. Those who never liked this distinction in the first place will hold a

workshop and burn all reprints that contain the keywords “neat” or “scruffy.”

In closing I'll leave you with two of my favorite quotes. The first one is by Thomas Edison.
Thomas Edison was born too early to be an Al person, but I think he would have been a good
one if persistence counts for anything. Ile had a lot of trouble finding the right filament for
the light bulb, and he tried a lot of filaments before he found a workable one. Whenever 1
see the following quote I like to mentally transport Edison into 1987 and place him in an NSF
office where he’s trying to convince a program manager to {und his research. Exasperated and

impatient with the obvious difficulty of his situation, he says:
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“I’ve tried everything. I have not failed. I've just found 10,000 ways that won’t work.”

I think anyone who’s been in Al for more than ten years can probably relate to that scenario,
but this is a rather pessimistic perspective on the state of the art, so I don’t really want to
leave you on that note. It makes the whole business sound like a simple brute force search, and

I think we’re all at least a little smarter than that,.
Here’s a happier observation from Francis Bacon which seems closer to the true spirit of Al

“Truth emerges more readily from error than from confusion.”
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QUESTIONS AND ANSWERS

Q: I wonder if you might have seen the little note on USENET from Donald Normal about
artificial intelligence as a science. Whether you have or not, let me ask the question.
What, in your opinion, controls the development of this research from the point of view
of both evidential support and falsification? I ask it because you didn’t say anything
about it.

B

: Well, I think there’s a lot of soul searching that goes on in Al on this point, particularly
within the machine learning community. Language researchers are perhaps less preoc-
cupied with such concerns because it is very hard to design convincing experiments for
processes of this complexity. However, one good collection of psychological experiments
inspired by the knowledge structuring work at Yale is {Galambos et al. 1986].

1 think a big part of our enterprise can be reasonably characterized as trying to understand
the problem before we can presume to find solutions. For example, Rieger thought the
inference problem was primarily a control issue. Schank says it’s primarily an issue about
knowledge and memory organization.

I think we understand a good deal more about language now than we did 15 years ago,
but whether we’re learning what we learn by practicing a normal science is another issue.
Personally speaking, I don’t really care if we’re practicing science as long as we can say
we're learning something.

How about an easy question?

Q: I'll give you a technical question | have about the last point of your talk ... where you de-
scribe the recent work by Riesbeck as an effort combining episodic memory with semantic
memory. You said that would create a problem for knowledge acquisition. It seems to
me that if you could store the sentences you understand in the same representation that
you are using to parse them, then that would be a big windfall for knowledge acquisition,
because once you parse it, you have it available as part of your episodic memory for use
later on. So the impression I get is just the opposite of what you said. Can you clarify
that?

A: You have to carelul about exactly what it is you think you should learn. If you’re interested
in psychological validity, there’s a lot of evidence that people are very bad at remembering
sentences verbatim in long-term recall or recognition. Even so, the content of those same
sentences can be recalled. This suggests that our episodic memory structures operate
with some system of knowledge representation that is not dependent on sentences per se.

When we say that DMAP can “understand” a sentence better if it’s seen the sentence
before, we should keep in mind that DMAP will also understand a paraphrase of the
that sentence with equal advantage because the memory which facilitates understanding
i based on a canonical form for meaning representation: all semantically invariant para-
phrases are collapsed to into a single mmeaning representation. So DMAP can’t be expected
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Q:

A:

Q:

A:

o

to learn anything about syntax or the processes needed to handle syntactic information
as long as its memory can’t record distinctions specific to syntax.

It is very difficult to say how the learning associated with episodic domain knowledge
relates to the problem of learning how to analyze sentences. Going back to psychological
validity, children acquire the basics of sentence analysis very early on. By the time a
child enters school, she’s basically working on vocabulary acquisition and an increasing
tolerance for syntactic complexity — the hard part of language acquisition is over and
what remains is a lot of expansion within existing structures. This suggests that the
mechanisms associated with adult language processing are probably not very plastic or
sensitive to specific sentences on a case by case basis. It might therefore make sense to
separate the two types of learning as distinct and separable problems (as DMAP does).
Of course, there are plenty of connectionists who would disagree with me about this.

You spent some time talking about how one could use the same knowledge representation
structures for representing the concept in the sentence and concepts of just verb and noun
through grammatical terms, but I guess I missed something along the way. What power
does that give you, what’s the advantage of doing that?

Ah. Well, the idea is that we should get away from that one slide ] showed you from Dyer’s
thesis, where the 22 different knowledge structures interact with one another in very
arbitrary and idiosyncratic ways. If we could find knowledge representation techniques
and memory organization techniques which allow us to bring in all kinds of different
knowledge structures under the same representational umbrella, then we can develop
algorithms that manipulate that information in a uniform manner. So it's a question of
finding uniform processing theories as opposed to allowing the whole enterprise to break
down into 1001 interacting experts who each speak different languages and talk about
different things.

I shou'd also point out that I’m only trying to identify some trends in our research. Time
will tell whether or not this trend is justified. Maybe reality will ultimately reveal herself
to be 1001 different experts and we’ll just have to develop appropriate techniques for
dealing with that kind of complexity.

So in the case of Waltz and Pollack, we’ve really got sentences being parsed using only
spreading activation? Some form of connectionism?

In the case of Waltz and Pollack, that’s exactly what we’ve got. In the case of Jacobs who
was working with KODIAK, we see another form of spreading activation called marker
passing which operates a lot like relaxation except it’s just not numerical relaxation. In
both the numeric and non-numeric approaches, a simple algorithm is iteratively applied
to nodes in the network until a stable state is reached. A lot of people are playing around
with marker passing these days, including Charniak.

And do those parsing algorithms duplicate the same phenomena that something like the
Marcus parser does ... garden path phenoinena?

Pollack and Waltz were very interested in garden path sentence processing and they have
examples which simulate effects exhibited by human subjects.
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Q: Could you speak briefly about the current interaction between psycholinguistics and com-
puter science in language understanding, because it seems like some of these models come
from insights from psycholinguistics, but you didn’t mention that.

A: [ think if you concentrate on the knowledge-based aspects of language processing, you find
influence coming in from a number of places. For example, the Zernik work on frozen
idioms and analogical mappings was, I suspect, heavily influenced or at least inspired by
the work of George Lakoff.

Much of psycholinguistics, however, restricts its domain of inquiry to syntactic phenom-
ena without appropriate concern for interactions between syntax and other knowledge
structures. To the extent that this is true, many of the results we see from those experi-
ments are not very illuminating for people working on knowledge-based natural language.
Indeed, most of us argue rather vehemently against the segregation of syntactic process-
ing.

Q: No, but the psycholinguists do experiment on memory, and they’re interested in memory,
they’re interested in semantic memory, they’re interested in cross-cultural effects of un-
derstanding. I was just wondering if there are any active relationships between these
bodies of research.

A: There are scattered instances of influence. For example, Eugene Charniak was strongly
influenced by the experiments of David Swinney in the late 70’s. Experiments by Robert
Milne are important for people working on lexical access. I’'m not sure how much there
is in terms of active collaboration, but it is always important to keep the channels of
communication open.

Q: D've noticed that the entire description stayed within the verbal domain, and I’'m wondering
if that reflects a supposition about how people really think. Or is that just a starting
point which we might have to inove away from at some later time?

A: What do you mean by “verbal” domain?

Q: Well, for instance, when you said, “Does a penguin have skin?” | immediately saw a picture
of a penguin. As a matter of fact, it was superimposed on a map like an old Disney movie.
Then I saw a few feathers removed and then I saw skin underneath. I didn’t say, “Is this
a bird?” There was no classification like that going on.

A: Right. There are two things to say about that. First, a warning, and then an answer. It’sa
little dangerous to place a lot of credibility in your subjective experience of what happens
when you answer questions or understand sentences. If we’re conscious of anything, that’s
just the tip of the iceberg. In fact, we can’t even say if it’s a real piece of the iceberg or
some completely misleading side effect caused by the iceberg. So that’s the warning.

Having said that, I think there’s a very serious question about whether or not the knowl-
edge structures underlying language are in fact the same knowledge structures underlying
visual information processing. If they aren’t, then we should worry about which aspects
of common sense reasoning would be better served by which structures.
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And as far as I can tell, there’s precious little interaction between high-level vision re-
searchers and knowledge based language researchers. This is too bad. Surely we both
have needs related to spatial reasoning, although those concerns are probably much more
central to vision processing than language processing.

There’s been a certain amount of philosophical posturing around this question. Pylyshyn
and Jackendoff come to mind. But it seems silly to jump to any conclusions given how
little we really know about the whole business. 1 can’t even say the jury is still out since
the matter hasn’t really come to trial.
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The balloon was originally inflated.
The balioon broke (not the light bulb)
The light bulb was hot.

The light bulb was on.

The heat caused the balloon the break.
The balloon exploded.

The explosion made a loud noise.

The baby was scared.

The loud noise scared the baby.

The baby cried because it was scared.
Mary is mad at John.

Mary communicated her anger to John.
Mary picked up the baby to comfort it.
John is not overly concerned

John will throw the balloon away.
John was responsible for the balloon breaking.
John was responsible for the baby crying.
Mary is mad at John for making the baby cry.
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Mary was in theé hospital.
John took her flowers.

(John took flowers to Mary)

Mary was walking through Central Park.

A stranger took her money.

(A stranger took money from Mary)

Figure 10. Context Effects for Sentence Analysis
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action m
A .
actor
selling L
m
seller
selling
actor
seller

1355:P5)
Figure 12. 1Implicit Role-Play Links




Putting it Together

Conceptual Structures

Linguistic Structures

Ficure 15, it
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Aating Sviatax and Semantics
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Figure 15, Adding Syntactic Constrai




Semantic Memory vs. Episodic Memaory

Does a penguin have skin?

“EEAGBUJYQ

Does a chicken have skin?

dinner
last night

main-course

as-foo0d0 .
chicken

favorite-part

proguct

location

can-ve

skin greasy ‘

Id g - —
0 ~
( Kentucky Fried | \ top- o
. Set rc'l~1uqxc'n'xo"\~.
. Chicken - o
e s - 11 herbs & spices )

Figure 16. Semantic Memory vs. Episodic Men}ory
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"Interest rates will rise as an inevitable consequence

of the monetary explosion.®
-Milton Friedman

(The New York Times, Aug. 4, 1984]

Figare 17, toleratanding Milton Friedman




